Ambiente

Resíduos líquidos industriais viram combustível para energia limpa

Os tratamentos tradicionais dos efluentes de processos industriais, ou seja, dos resíduos líquidos resultantes, ocorrem principalmente por meio da remoção de poluentes para, em seguida, despejá-los em cursos d’água. A busca por alternativas mais sustentáveis que essa, lançando mão de avanços tecnológicos, é o foco do trabalho de Vitor Cano, doutorando da Escola de Artes, Ciências e Humanidades (EACH) da USP. Mais do que tratar os resíduos, sua pesquisa pretende obter energia a partir deles.

Seu trabalho – desenvolvido em parte na Columbia University, em Nova York, Estados Unidos – é voltado para a concepção e operação de um sistema bioeletroquímico denominado Célula a Combustível Microbiana (CCM), conhecida na literatura internacional como microbial fuel cell.

Basicamente, trata-se de um reator biológico composto de bactérias capazes de consumir a matéria orgânica em sua respiração, mas com a diferença de que elas podem transferir os elétrons gerados no processo para fora da célula. Dessa forma, é possível capturar esses elétrons em um eletrodo, gerando assim uma corrente elétrica.

“É uma tecnologia muito recente e promissora, pois permite a geração direta de eletricidade a partir de resíduos orgânicos, como efluentes industriais. Em outras palavras, é possível tratar efluentes industriais e, em vez de gastar energia, gerar eletricidade”, explica o estudante da pós-graduação em Sustentabilidade da EACH, que está no Departamento de Engenharia Ambiental da universidade norte-americana desde outubro de 2017, no grupo de pesquisa coordenado pelo professor Kartik Chandran.

Segundo Vitor Cano, a etapa da pesquisa que ele realiza na Columbia University busca aprimorar ainda mais as possibilidades dessa tecnologia. “Estou adaptando a célula a combustível microbiana para usar não apenas a matéria orgânica como combustível, mas também o nitrogênio presente nas águas residuárias. Com isso, reduzimos a carga orgânica dos efluentes industriais e possibilitamos um novo método para o tratamento em termos de carga de nitrogênio, com a vantagem de gerar energia renovável.” Fonte: Jornal da USP (#Envolverde)